In Berechnungen werden Opvs mit unendlicher Verstärkung angegeben. In realen Anwendungen stoßen diese Komponenten jedoch an physikalische Grenzen. Der ideale Operationsverstärker existiert somit nur auf dem Papier.
In der Praxis können dennoch hohe Verstärkungswerte erzielt werden. Die Einschränkungen der Verstärkung mit offenem Regelkreis werden von der Menge an Leistung vorgegeben, die das Gerät letztlich erhält. In den meisten Fällen liegt dies in etwa 1 V unterhalb der Leistung, die dem Gerät zur Verfügung gestellt wird.
Ein weiteres Merkmal eines idealen Operationsverstärkers ist die unendlich hohe Eingangsimpedanz, also dem Widerstand für den Strom an den beiden Eingangsklemmen. Theoretisch bedeutet dies, dass letztendlich kein Strom durch das Gerät hindurch fließen kann. Doch auch dies wäre in der Praxis nicht möglich, da bei jedem Operationsverstärker ein gewisses Maß an Leckstrom durch die Eingänge tritt, auch wenn dieser nur gering ist. Dasselbe gilt im Übrigen auch für die Ausgangsspannung, an der ebenfalls immer ein Mindestmaß an Widerstand vorherrscht.
In Schaltungen mit Wechselstrom ist oftmals von einer sogenannten Bandbreite die Rede: Bei einem Operationsverstärker gibt diese Größe an, mit welchen Frequenzen das Gerät letztlich arbeiten kann. Bei einem idealen Operationsverstärker wäre die Bandbreite unendlich, während ein tatsächlicher Opv immer noch innerhalb einer gewissen Frequenz arbeitet.
Der sogenannte Spannungsversatz beschreibt den Output des Geräts, wenn an beiden Eingängen eine gleich hohe Spannung anliegt. Bei einer idealen Komponente wäre dies gleich Null. Tatsächlich gibt ein Operationsverstärker jedoch immer ein gewisses Maß an Spannung weiter. Dies ist sogar dann der Fall, wenn beide Anschlussklemmen geerdet sind.
Ein weiterer Punkt ist die Anstiegsgeschwindigkeit. Auch hier erreicht der Opv irgendwann einen physikalischen Grenzwert, ab dem sich die Änderungsrate des Ausgangssignals nicht mehr ändert. Eine Änderung des Eingangssignals würde in diesem Falle zu keinerlei Änderung des Ausgangssignals mehr führen. Diese Größe wird in Spannung pro Zeit angegeben und reicht von weniger als 1 V pro Mikrosekunde bis hin zu 13.000 V pro Mikrosekunde.